Installation et utilisation de Docker sur MAC.

“Docker permet d'empaqueter une application et ses dépendances dans un
conteneur isolé, qui peut étre exécuté sur n'importe quel serveur. |l ne s'agit pas de
virtualisation, mais de conteneurisation”

1. Installer “Docker Desktop”
Cela permettra de gérer ses conteneurs
https://www.docker.com/products/docker-desktop/

Dés que Docker Desktop est installé, le logiciel doit ressembler a ¢a :

® & dockerdesktop rersonal Q search

9\ Sign into use additional features enabled by your organization. X

24 Ask Gordon BETA N
Containers
@ Containers ew all
3 Images
Volumes
Container CPU usage Container memory usage
/% Builds
D Models BeT

@ Only show running containers
&  Docker Hub

[ Docker Scout Container ID Image Port(s) CPU (%) Last started Actions

¢ Extensions

No running containers found

Walkthroughs

Multi-container applications Containerize your application

Mon but est ici de créer un environnement de développement pour un projet
Symfony dans le cadre de réalisation de tests de procédure, un environnement
d’apprentissage.

Il est possible de télécharger des “Images” directement depuis le site “docker” ou
nous pouvons nous méme creéer les images.
https://hub.docker.com/search

2. Pour un projet Symfony, nous allons créer nous méme les conteneurs avec
nos besoins

- Un conteneur “MariaDB” pour gérer les bases de données

- Un conteneur “PHPMyAdmin” pour l'interface graphique

- Un conteneur “Apache”/Docker afin de contenir notre projet


https://www.docker.com/products/docker-desktop/
https://hub.docker.com/search

Pour se faire, il faut tout d’abord un projet Symfony avec les composer require de
base (Doctrine, Form, Maker, Twig, security, validator, csrf).

Dés que cela est fait, on crée un fichier “docker-compose.yml” a la racine du projet, il
contiendra tous les détails de nos conteneurs.

Project

~ [J Developpement
v [3 ProjetDev
> D bin
> [3 config
> [ migrations
> [ public
> Dsrc
> [ templates
> Dvar
> [ vendor
@ .editorconfig

= .env.dev
.gitignore

{} composer.json

} composer.lock
docker-compose.yml

= symfony.lock

projetdev:
build:
context: ./docker
volumes:
- ./:/var/www/html
ports:
- "8083:80"

projetdev-db:
image: mariadb
environment:
MYSQL_ROOT_PASSWORD: root
MYSQL_DATABASE: projetdevbdd
ports:
- "3336:3306"
volumes:
- mariadb_data:/var/lib/mysql

phpmyadmin:
image: phpmyadmin
environment:
PMA_HOST: projetdev-db
PMA_PORT: "3306"
ports:
- "8890:80"

volumes:
mariadb_data:




Le Context va permettre de définir I'endroit ou sera installé le Dockerfile (I'image).
Pour une question d’organisation, je crée un dossier “Docker” pour mettre ce fichier
afin d’ajouter aussi un fichier vhost.conf.

On décide des ports, et ressources pour chaque conteneur (ici je choisi des ports
“non-conventionnels" , 8083 au lieu de 8000, puisque jai déja plusieurs conteneurs
existants, ils ne doivent pas entrer en conflit). On décide par ailleurs, des mots de
passe de la base de données (ici root suffit pour un projet en local).

3. Création du Dockerfile
Le dockerfile va gérer les détails de I'image (aussi téléchargeable depuis le hub
docker)

Je crée un dossier /docker puis le fichier :
v [ ProjetDev

> @ bin
> [3 config

v [ docker

Dockerfile

Dans ce fichier :

FROM php: -apache

RUN update && install -y libicu-dev zip unzip
RUN intl pdo pdo_mysql

COPY vhost.conf /etc/apache2/sites-available/000-default.conf
RUN rewrite

RUN -i "s/128M/1024M/gi"
/usr/local/etc/php/php.ini-development

RUN /usr/local/etc/php/php.ini-development
/usr/local/etc/php/php.ini

Ensuite je crée un fichier “vhost.conf’ dans ce méme dossier afin de préparer le
détail du virtualhost

<VirtualHost *:80>
DocumentRoot /var/www/html/public

<Directory /var/www/html/public>

AllowOverride A1l

Require all granted

FallbackResource /index.php
</Directory>




</VirtualHost>

Dés que cela est fait, je peux construire I'image “build” :
docker-compose up --build

La construction de I'image est lancée
[+] Building 68.2s (6/11)

=> [projetdev 3/7] RUN docker-php-ext-install intl pdo pdo_mysql

projetdev

Network projetdev_default

Volume "projetdev_mariadb_data"
Container projetdev-gsb-bdd-1
Container projetdev-projetdev-1
Container projetdev-phpmyadmin-1

Avec la commande “up”, les conteneurs se lancent automatiquement. Il est possible
de les arréter avec un “Ctrl + C” puisque nous pouvons les gérer manuellement
depuis Docker Desktop.

Tout est affiché depuis Docker Destop avec la possibilité de cliquer pour lancer les
conteneurs.

projetdev - - - 0% 4 seconds ago
projetdev-db-1 1787ff0adaa6 0% 4 seconds ago

projetdev-1 a3133c44199a 0% 4 seconds ago

phpmyadmin-1 5fa34af20766 0% 4 seconds ago

En cliquant directement sur le port, nous sommes redirigés vers les images
souhaites :



oD localhost:

Welcome to
@ Symfony 8

@ You are using Symfony 8.0.3 version

(3 Your application is ready at:
/var/www/html/

@ You are seeing this page because the homepage URL is not configured and debug mode is enabled.

NEXT STEP Create your first page to replace this placeholder page.

localhost

php
Bienvenue dans phpMyAdmin

Langue (Language)

Frangais - French v

Connexion &
Utilisateur : root

Mot de passe :

Connexion

4. Ajouter les hosts
Dans le fichier /etc/hosts il est nécessaire d’ajouter le nom de nos conteneurs
(Apache et Base de données) afin de finir la configuration.

nano /etc/hosts

127.0.0.1 projetdev

127.0.0.1 projetdev-dblj

5. Lier la base de données avec Docker




Dans son .env.local il suffit d’ajouter le nom du service ainsi que le login et le nom de
la base de données (qui sera créé automatiquement lors du build, sinon faire :
php bin/console doctrine:database:create)

DATABASE_URL="mysql://root:root@projetdev-db:3336/projetdevbdd"

Désormais dés qu’une entité ou une migration sera effectuée elle sera liée au
conteneur Docker et sa BDD.
o Nouvelle base de données

+—  information_schema
-Il- —  mysql

-:l- —  performance_schema
-Il- —  projetdevbdd

performance_schema . .

. Table o Action Lignes & Type Interclassement Taille Perte

- projetdevbdd _
doctrine_migration_versions Parcourir [l Structure % Rechercher 3¢ Insérer g Vider @ Supprimer 1 InnoDB utf8mb4_ucal1400_ai_ci 16,0 kio -

o Nouvelle table =
+- 1 doctrine_migration_versions nom Parcourir  J» Structure % Rechercher F< Insérer i Vider @ Supprimer @ InnoDB  utf8mb4_unicode_ci 16,0 kio -

[

+- 4 nom 2 tables Somme 1 InnoDB utf8mb4_uca1400_ai_ci 32,0 kio 0 o



	Installation et utilisation de Docker sur MAC.  

